

Concrete / Pictorial / Abstract Maths Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondary school.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups. This presents a challenge in ensuring the more confident mathematicians are being extended. An extension tasks to deepen understanding is the most simplistic way around this.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's (1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

EYFS Addition

Objective / Strategy	Concrete	Pictorial	Abstract
combining two parts to make a whole: partwhole model	use part, part whole model. Use cubes to add two numbers together as a group or in a bar. Combining two parts to make a whole (use other resources too eg. eggs, shells, teddy bears, cars).	Use pictures to add two numbers together as a group or in a bar. Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven. $\begin{aligned} & 7=4+3 \\ & 7=3+4 \\ & \\ & 4+3=7 \\ & 3+4=7 \end{aligned}$

		How to use the bar method to support understanding Theo has got 4 cars and 3 lorries. How many toys has he got? Theo has got \qquad toys allogether. This model will be used in the summer term for some children.	
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. Use different practical equipment.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Make numbers up to 10 in different ways Automatically recall number bonds to 5 and			use connting songs to explore number bonds

	Use unifix cubes to show one more and one less in towers		
YEAR 1 Addition			
Objective / Strategy	Concrete	Pictorial	Abstract
combining two parts to make a whole: partwhole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ Use the part whole diagram as shown above to move in to the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make $10 .$ This is an essential skill for column addition later.	$9+3=12$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10. $9+5=14$	$7+3=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Represent \& use number bonds and related			Include missing number questions: $8=?+3$

YEAR 2 Addition

Objective Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part, part whole	Children explore ways of making numbers within 20	$\begin{gathered} \text { 20< } \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	Explore commutativity of addition by swapping the addends to build a fact family. Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations. \square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 - \square $=1$
Using known facts		children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$

Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to ake 'Magic $+\mathrm{en}^{\prime}$ Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part whole and number line to model. $17+5=22$	$17+5=22$ Explore related facts$17+5=22$22 17 5$5+17=22$$22-17=5$$22-5=17$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a 2 digit number and tens	$\begin{aligned} & 25+10=35 \end{aligned}$		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

	Explore that the ones digit does not change					
Add two 2digit numbers	$\\|: \quad\\| \\|$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.			
Add three 1-digit numbers	combine to make 10 first if possible, or bridge 10 then add third digit	so + \qquad $+$ Regroup and draw representation. ofisto $+\operatorname{Sof}^{\circ}=15$	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ combine the two numbers that make/ bridge ten then add on the third.			

YEAR 3 Addition

Objective Strategy	Concrete	Pictorial	Abstract
column Addition-no regrouping (friendly numbers) Add two or three 2 or 3 digit numbers.	 Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
column addition with regrouping.			$\left\lvert\, \begin{array}{r} \begin{array}{r} 20+5 \\ 40+8 \end{array} \\ \frac{536}{60+13}=73 \\ \begin{array}{l} \text { Start by } \\ \text { Partitioning the } \end{array} \\ \underline{\underline{621}} \end{array}\right.$

	Exchange ten ones for a ten. Model using numicon and place value counters. $46+27=73$	Children can draw a representation of the grid to further support their understanding, carrying the ten. underneath the line	numbers before formal column to show the exchange.
Estimate the answers to questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers: $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

YEARS 4 - 6 Addition

Objective /Strategy	Concrete	Pictorial	Abstract
Years 4-6 Estimate and use inverse operations to check answers to a calculation	AS per Year 3		
44-add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet \ddots \bullet \because $\because \bullet$ \ddots \bullet \because \ddots \ddots 7 1 5 1 \bullet \bullet Draw representations using place value grid.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As year 4 Introduce decimal place value counters and model exchange for addition.		

\begin{tabular}{|c|c|c|c|}
\hline Y6-add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points. \& As 45

s \& As 45 \& Insert zeros for place holders.

$$
\begin{array}{r}
81,059 \\
3,6688 \\
15,301 \\
+20,551 \\
\hline 10,579 \\
11,1 .
\end{array} \begin{array}{r}
23 \cdot 361 \\
9 \cdot 080 \\
59 \cdot 770 \\
+\begin{array}{l}
1 \cdot 300 \\
\hline 93 \cdot 51 \\
21
\end{array}
\end{array}
$$

\hline
\end{tabular}

EYFS SUBTRACTION

| counting back | move objects away from the
 group, counting backwards
 move the beads
 along the bead
 string as you
 count
 backwards. | Put 10 in your head, count back 2 .
 what number are you at? |
| :--- | :--- | :--- | :--- | :--- |

YEAR 1 SUBTRACTION

Objective Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $4-2=2$	cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
counting back	Move objects away from the group, counting backwards move the beads along the bead string as you count backwards.	count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

Find the difference	compare objects and amounts Lay objects to represent bar model.	count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?

Objective/Strategy	Concret e	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, whats the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model 5 12 7 Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$

make 10	Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4. Use ten as the stopping point.	16-8 How many do we take off first to get to 10? How many left to take off?

| Bar model
 Including the
 inverse
 operations. | $5-2=3$ |
| :--- | :--- | :--- | :--- |

YEAR 2 - SUBTRACTION			
Objective \& Strategy	Concret e	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	children draw representations of Dienes and cross off. \square $43-21=22$	$43-21=22$
make ten strategy			

Objective/ Strategy	Concrete	Pictorial	Abstract
subtract numbers mentally, including: three digit number $+$ ones three digit number + tens three digit number $+$ hundreds			Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
column subtraction without regrouping (friendly numbers)	$47-32$ Use base 10 or Numicon to	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be 32 needed to lead to clear - 12 subtraction understanding $\frac{12}{2}$

	model		
column subtraction with regrouping	Begin with base 10 or Numicon. move to PV counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	

YEARS 4-6 SUBTRACTION

Objective /Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw PV counters and show their exchange-see 43	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw PV counters and show their exchange-see 43	

up to 3 decimal places				
Year 6-Subtract	As Year 4			
		show their		${ }^{\circ} X^{14} \not 810,699$
with increasingly large and more		exchange-see 43		89,949
complex numbers and decimal values				$60,750$
				$\text { " } \mathrm{HID} \mathrm{I}^{15} \cdot{ }^{3} \mathrm{~A}^{\prime \prime} 9 \mathrm{~kg}$
				$36 \cdot 080 \mathrm{~kg}$
				69.339 kg

EYFS (Summer term) / YEAR 1 MULTIPLICATION

Programme of Study specifies the following objectives, however it does not require the explicit teaching of the mathematical symbol of multiplication

Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it $+\quad=32$
counting in multiples $(2 s, 5 s, 10 s)$	count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. 	count in multiples of a number alond. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

making equal groups and counting the total (EYFS numbers up to 20)	use manipulatives to create equal groups.	Draw 8 to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problems prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understandi ng arrays (Year 1 only)	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc .	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

YEAR 2 MULTIPLICATION Children should be able to recall and use multiplication and division facts for the 2,5 and 10 times times tables.			
Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters. $40+12=52$	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it ${ }^{\text {b }}$ back together.
counting in multiples of 2 , 3, 4, 5, 10 from 0 (repeated addition)	count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $\begin{aligned} & 5+5+5+5+5+5+5+ \\ & 5=40 \end{aligned}$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$

Objective / Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	create arrays using counters and cubes and Numicon. ruplls shoula understana that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$12=3 \times 412=4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. $\left\lvert\, \begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}\right.$
Using the Inverse This should be taught alongside division, so pupils			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \end{aligned}$

learn how they work alongside each other.			$\left\lvert\, \begin{aligned} & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}\right.$ Show all 8 related fact family sentences.

YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables

Objective /Strategy	Concrete	Pictorial	Abstract
Grid method, progressing to the formal method Multiply 2 digit numbers by 1 digit numbers	Show the links with arrays to first introduce the grid method. Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Move forward to the formal written method: $\begin{array}{r} 35 \\ \times \quad 7 \\ \hline 245 \\ \hline 3 \end{array}$

Fill each row with 126. Add up each column, starting
$4 x$ $=20$ with the ones making any
exchanges needed
Then you have your answer.

| Solve | | Three times as high, eight times as
 problems,
 including
 missing
 number
 problems,
 integer
 scaling
 problems | |
| :--- | :--- | :--- | :--- | | $? \times 5=20$ |
| :--- |
| $20 \div ?=5$ |\quad| 3 hats and 4 coats, how many |
| :--- |
| different outfits? |

ememe	${ }_{\text {concese }}$	Praorial	Abstrad
coly		come	
	\%om	5	
			+ 4

Objective Strategy	Concrete	Picto rial	Abstract
Column Multiplication for 3 and 4 digits $\times 1$ digit.	 It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	continue to use bar modelling to support problem solving	18×3 on the first row ($8 \times 3=24$, carrying the 2 for 20 , then 1 x 3) $\begin{aligned} & 1234 \\ & \times \quad 16 \\ & \hline 7404 \\ & \begin{array}{r} 18 \times 10 \text { on the } 2 \text { nd row. } \\ \text { Show multiplying by } 10 \end{array} \\ & \hline 1234 \times \text { by putting zero in units } \\ & 12340 \\ & \hline 19,744 \\ & \hline \end{aligned}$

| Objective/Strateg
 y | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- | :--- |
| multiplying
 decimals up to
 2 decimal
 places by a
 single digit. | | | Remind children that the single
 digit belongs in the ones column.
 Line up the decimal points in the
 question and the answer. |

YEAR 1			
Objective IStrategy	Concrete	Pictorial	Abstract

Objective/ Strategy	Concrete	Pictorial	Abstract
Division as sharing (EYFS in Summer term taught in a practical way e.g. halving)	I have 10 cubes, can you share them equally in 2 groups?	children use pictures or shapes to share quantities. 8 shared between 2 is 4 Sharing: 12 shared between 3 is 4	12 shared between 3 is 4

Objective/Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

| | $15 \div 5=3 \quad 3 \times 5=15$ |
| :--- | :--- | :--- | :--- |$|$| $4=28 \div 7$ |
| :--- |
| $7=28 \div 4$ |

Objective/Strategy	Concrete	Piotorial	Abstract
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. (8) Use bar models to show division with remainders.	complete written divisions and show the remainder using r.

(2)

Year 4-6

Objective/Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit.	$96 \div 3$	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.	Begin with divisions that divide equally with no remainder.
Short Division	Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.		Move onto divisions with a remainder.
			$5 \mid 431$
		Encourage them to move towards counting in multiples	Finally move into decimal places to divide the total accurately.
	0 8 0	to divide more efficiently.	
	We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the		$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

Long
 Division

Step 1-a remainder in the ones

$h \mathrm{t} \circ$
041 R 1
165

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto
0400 R7
$8 \longdiv { 3 2 0 7 }$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

- .

> h to 061 $4 \lcm{247}$ $\frac{-4}{3}$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

	$\begin{gathered} \text { Long } \\ \text { Division } \end{gathered}$	
Step 2-a remainder in the tens		
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} \quad \begin{array}{c} 0 \\ 2 \\ 2 \longdiv { 5 8 } \end{array} \end{gathered}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ =-\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division

Step 2-a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$2 \longdiv { h ^ { h t o } }$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \begin{array}{c} h t o \\ 1 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \end{array} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t \circ \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{1} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h \pm 0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t o \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ -\quad 6 \\ \hline \quad 18 \end{gathered}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{array}{r} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{array}{r} h t o \\ 139 \\ 2 \lcm{278} \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ -18 \end{array}$ There are no more digits to drop down. The quotient is 139 .

